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Abstract: This study is an investigation into the ability of pre-assessment measures of formal 

thought ability and general achievement to predict students at-risk of poor performance in college-

level general chemistry.  Over a three year period, data on formal thought ability (as measured by 

the Test of Logical Thinking, or TOLT) and/or general achievement (as measured by the 

Scholastic Aptitude Test, or SAT) was collected from over 3000 students as they entered a 

general chemistry course.  The outcome measure was an American Chemical Society general 

chemistry exam at the end of the course.  Findings indicate that both the formal thought and the 

general achievement measure can successfully identify at-risk students in this setting, with neither 

measure being superior in doing so.  The presence of distinct groups of students correctly 

predicted to be at-risk by only one of the measures demonstrates that formal thought ability and 

general achievement each represent an independent hindrance to success in chemistry.  Therefore, 

efforts to help at-risk students should include a focus on the development of formal thought as 

well as a content review. [Chem. Educ. Res. Pract., 2007, 8 (1), 32-51] 

 
Keywords:  Assessment, formal thought, at-risk students, performance predictors, college 

chemistry 

 

 

Introduction 
 

All too often, substantial numbers of students in college fail to demonstrate sufficient 

understanding of chemistry to proceed beyond the introductory course, general chemistry.  

This circumstance hinders not only the individual student but also the field of chemistry.  

While the costs to the individual are immediate and obvious (not only the regrettable lack of 

knowledge of chemistry but also a closed door to any major field of study requiring that 

knowledge), the costs to chemistry are also significant. With each year this trend continues, 

chemistry loses numerous individuals who now will not contribute to the growth of the 

discipline. Indeed the ramifications stretch beyond chemistry, as other science curricula 

require general chemistry prior to course work within their program (Tai et al., 2005).  

Students who cannot muster an acceptable understanding of general chemistry are prevented 

from contributing to many science fields.  On a more systemic level, the inability of students 

to continue in science-oriented courses because of low performance in general chemistry 

represents a major setback in efforts to create a scientifically-informed populace and a 

technically-proficient workforce.  For these reasons, unsatisfactory student performance in 

college-level general chemistry remains a critical area of concern.  

Since basic constructivism indicates that the prior knowledge and skills with which 

students enter a course play a role in success (or its absence), it is both possible and valuable 

to identify students who are at-risk of not succeeding in a course at the point when they first 

enter the course.  To do so provides the opportunity for assisting these students early on, 
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while success is still possible.  Further, knowledge about the factors contributing to low (at-

risk) performance can inform the design of interventions aimed toward reducing the 

challenges faced by these students.  The first task is identifying the at-risk population with 

reasonable accuracy, and the second is suggesting potential interventions.  Ideally, the 

measure used for identification contains within itself implications for a potential remedy. This 

paper compares the accuracy, degree of overlap, and implications for potential interventions 

of two measures that can be used to identify students at-risk of not succeeding in general 

chemistry. It therefore joins a long history of ‘predictor papers’ but is unique in its 

combination of generalizability, a focus on at-risk students, and consideration for the 

implications of choosing a particular predictor.  

 

The need for more work with predictors 

Extensive work has been done on the ability to predict success in college chemistry.  Past 

studies of college chemistry have examined the ability of SAT (Pederson, 1975; Pickering, 

1975; Bender and Milakofsky, 1982; Craney and Armstrong, 1985; Nordstrom, 1990; Bunce 

and Hutchinson, 1993; Spencer, 1996), ACT (Carmichael et al., 1986; Nordstrom, 1990 

House, 1995), high school GPA (Carmichael et al., 1986), high school chemistry grade 

(Ozsogomonyan and Loftus, 1979; Craney and Armstrong, 1985; Nordstrom, 1990), 

personality characteristics (House, 1995) and Piagetian tasks (Bender and Milakofsky, 1982; 

Bunce and Hutchinson, 1993) to predict final chemistry course grade.  In all these studies, 

however, the use of chemistry grade as an outcome variable relies on the ability of chemistry 

grade to approximate chemistry understanding.  The extent to which this approximation is 

valid depends on several decisions peculiar to the course, the instructor and the institution.  

Decisions such as grading on a curve or an absolute scale, grading based completely on exam 

performance versus consideration of student homework, the allowance of extra credit, and 

even the method by which each exam was created, can all alter the extent to which chemistry 

grades reflect true student understanding of chemistry.  As a result, the generalizability of the 

above studies depends on whether all of these factors are handled the same way at other 

institutions.  Of the studies presented above, the work by Bender is the only one to provide 

detailed evidence of the grading procedures employed so that a replication could be attempted 

at another institution. 

A more replicable option for an outcome variable is the use of a single exam as a measure 

of students’ chemistry understanding. The exam questions can readily be made available for 

scrutiny in order to provide a clear picture of what constitutes success in chemistry, with none 

of the ambiguity surrounding course grade. In addition, the scoring of a single exam lends 

itself readily to the statistical procedures commonly used with predictors.  One example of 

such a procedure is present in Yager et al.’s examination of the effects of taking high school 

chemistry (Yager et al., 1988).  In this study, students were measured on a standard exam, a 

course final exam, and by a final course grade to provide multiple measures of success in 

chemistry.  In particular, the use of a standard exam allows for a ready assessment of 

generalizability.   

Finally, considerable work has gone into the development of chemistry-based diagnostic 

exams for course placement and prediction of performance (Russell, 1994; McFate and 

Olmsted III, 1999). These instruments tend to incorporate both math and chemistry questions 

and can be said to measure chemistry ability rather than incoming chemistry-specific 

knowledge. Such instruments seem to have a reasonably high success rate in predicting 

chemistry grades (McFate and Olmsted III, 1999; Legg et al., 2001; Wagner et al., 2002), but 

leave open the question of what can be done to assist the students who score low on such 

measures. Some suggestions put forth include recommending increased study time or 

remedial coursework for such students.  Similar suggestions are presented in Yager’s study. 
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But these suggestions do not necessarily lead to specific remedies: for example, what should 

be the design and intent of remedial coursework?  How should the increased study time be 

spent? Even in the case of chemistry-focused exams that can identify specific deficiencies 

indicating that students did not achieve a sufficient understanding of chemistry via their 

earlier chemistry courses, how should we construct a second attempt to teach these concepts 

so that it will be successful?  These questions are of particular importance, since recent 

research has suggested that remedial coursework may offer only marginal improvements in 

chemistry success (Bentley and Gellene, 2005; Jones and Gellene, 2005).  

Our dissatisfaction with the remedies that can be offered on the basis of chemistry 

diagnostic exams or high school chemistry GPAs led us to the most important facet of our 

study. In particular, we wanted to compare two potential methods of identifying at-risk 

students that would suggest slightly different remedies in order to consider whether either, 

neither, or both remedies are tenable. Our study therefore compares two predictors, one with a 

long history of success at predicting course grades (SAT score), and another with a sound 

theoretical underpinning (formal thought ability) but with less information available as to its 

efficacy as a predictor in a college chemistry setting.  As will be discussed in the next section, 

formal thought ability has a theoretical link to specific chemistry topics, and a research base 

aimed at improving formal thought performance (Lawson and Nordland, 1976; Adey and 

Shayer, 1990; Shayer and Adey, 1992a, 1992b, 1993) means that interventions to improve 

formal thought could be readily applied. In a similar fashion, the role of Math SAT in 

predicting performance implies that math skills are responsible for success, which would lead 

to specific suggestions of additional math course work or tutorials.   

Although our study joins a long history of predictor papers, no one has yet offered a 

replicable predictor study that contains within itself clear guidelines for the construction of 

remedies. Further, our focus is predicting students at-risk of performing poorly in general 

chemistry, since it is for these students that interventions are needed. This means we look 

specifically at how well the predictors in our study identify students who perform at the lower 

end of our outcome measure, something which few previous studies have done. (Notable 

exceptions are Legg (Legg et al. 2001) and Wagner (Wagner et al., 2002)). For our outcome 

measure, as a result of considering the limitations of previous studies based on course grades 

(discussed above), we chose a standard exam designed to measure student understanding of 

chemistry.  Our results are therefore generalizable to the extent that the content of this exam 

matches the desired outcomes at other institutions.  The exam is available to the public, so this 

determination can be made (Examinations Institute of the American Chemical Society, 1997). 

Further, our study allows us to see whether, in the specific case of college chemistry 

performance, a simple paper and pencil measure of formal thought ability, the Test of Logical 

Thinking (TOLT), can stand up against the SAT’s successful history.  

 

Formal thought and science achievement 

With the intent of identifying at-risk students in a way that would inherently suggest a 

particular remedy, our predictor selections had to be focused on measures that have the 

potential to describe a large hindrance for students. Because of its basis in a well-described 

learning theory, the construct of formal thought offers the ability to suggest specific 

difficulties students face, leading to specific remedies. Formal thought has been described as 

one of a series of factors necessary for a successful performance (Lawson, 1979, 1983; 

Chandran et al., 1987), so the absence of formal thought would definitely be expected to lead 

to a poor performance – exactly what is necessary for a good predictor of at-risk status.   

Formal operational thought is the last stage of cognitive development as described by 

Piaget, in which ‘deduction no longer refers directly to perceived reality but to hypothetical 

statements’ (Inhelder and Piaget, 1958).  In formal thought, possibilities are regarded as 
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hypothetical at first, and then verified by empirical evidence: in short, deductive reasoning.  

Contextually, this leads to the meaningful manipulation of empirical results, as well as a 

familiarity with the abstract.  Also taken from Piaget’s work is a series of reasoning patterns 

that would describe formal thought operations.  Adey and Shayer (1994) grouped the 

reasoning patterns into three main categories.  The first category, the handling of variables, 

includes the control and exclusion of variables, the recognition of multiple classification 

schemes, and the description of combinatorial possibilities.  The second category, 

relationships between variables, includes the use of ratios, and proportion (comparing of two 

ratios), as well as compensation (use of inverse relationships), correlation and probability.  

The final group, formal models, describes the creation of an abstract representation of 

complex behaviours.  Also included in this last group is the use of logical reasoning.  Within 

Piagetian theory, the onset of formal thought would be characterized by the development of 

all the cognitive operations at about the same time, a postulate that has been supported by 

empirical evidence (Lawson and Renner, 1975; Lawson and Nordland, 1976; Lawson et al., 

1978). 

Certain aspects of formal thought have been suggested as explaining the difficulty some 

students face in chemistry.  The second category, relationships between variables, for example 

could explain an inability to relate mathematical formulas to underlying concepts, a task 

frequently required in chemistry.  In keeping with this idea, some researchers have 

hypothesized which chemistry concepts require formal thought (Herron, 1975), and others 

have investigated links between formal reasoning ability and conceptual understanding of 

specific topics in chemistry (Abraham and Williamson, 1994; Demerouti et al., 2004).  Neo-

Piagetian theories of learning still incorporate formal thought ability as one of several critical 

cognitive factors important for problem-solving in chemistry (Niaz, 1987, 1996; Tsaparlis 

2005). Tsaparlis et al. investigated the effects of several cognitive variables on student 

performance on several types of molecular equilibrium problems and found that 

developmental level in terms of formal thought ability was the most important predictor of 

success; however, additional work led to the identification of developmental level as a 

potentially confounding factor in studies using chemistry problems with complex logical 

structures to investigate the importance of working memory capacity (Tsaparlis et al., 1998; 

Tsaparlis and Angelopoulos, 2000).  

Formal thought has been postulated as a necessary condition, either directly or indirectly, 

for conceptual change to occur (Oliva, 2003).  Thus, in addition to describing students’ 

incoming abilities, formal thought may play a role in whether and how students actively 

incorporate new information presented in the course.  One early example is the work of 

Lawson and Renner (1975), who showed that students at the concrete operational stage are 

unable to develop an understanding of formal concepts, and that students at the formal 

operational stage demonstrate an understanding of both formal and concrete concepts. 

Lawson (1982, 1985) pointed out that such results could be interpreted largely as a spurious 

correlation, describing what might be a more general intelligence measure underlying the 

success seen on both measures.  In the 1982 study, a partial correlation between formal 

thought and biology achievement while controlling for fluid intelligence revealed a significant 

relation, illustrating that it was the formal thought measure that better corresponded to this 

biology achievement measure.  

We continue this line of investigation by examining whether formal thought features a 

unique relationship to overall achievement in college chemistry.  While Lawson demonstrated 

that controlling for a general intelligence measure did not remove the relationship between 

formal thought and biology achievement, no one has investigated whether a general 

achievement measure, such as SAT, may be at the heart of that relationship.  The potential 

overlap between general achievement and formal thought has important classroom 
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implications for assisting at-risk students.  If formal thought and general achievement have a 

high degree of commonality in relating to course performance, then formal thought maps onto 

a broader range of general abilities and any potential remedies should consider this.  For 

example, efforts to promote formal thought alone may have limited utility, as other factors 

such as math ability would still hamper success.  However, if students with low formal 

thought are hindered in the course regardless of scores on the general achievement measure, 

then formal thought still represents a series of specific traits that are independent of more 

general measures.  In this case, interventions targeted solely toward the development of 

formal thought would have significant potential to assist at-risk students, whereas those that 

focus solely on developing math skills (such as algebraic manipulation) would not.  

Although the contrast between a general achievement measure and a formal thought 

measure provides theoretical interest, the primary goal of this study is to produce a 

generalizable model for identifying at-risk students that will be useful for recommending 

specific interventions leading to success in general chemistry. It is in this frame that we have 

discussed the two potential predictors and the implications arising from their comparison. Our 

goal therefore leads to a series of research questions: 

! Which predictor, SAT or a formal thought measure, is better able to identify at-risk 

students?   

! Are the at-risk students identified by each predictor distinct groups, which may lead to 

more specific interventions geared for each group of students?   

! Can a combination of SAT and formal thought measures provide an advantage in 

identifying at-risk students?   

! And, to what extent are all at-risk students identified by this set of predictors? 

 

Methods 

 

Instruments: predictor and outcome variables  

SAT 

The SAT is a college entrance exam common in the U.S., typically administered in a 

student’s final year of high school (Educational Testing Service, 2006).  When the SAT data 

were obtained, the mathematics portion of this multiple-choice exam covered basic topics in 

mathematics, including algebra, geometry, data analysis, and probability and statistics, while 

the verbal portion involved reading comprehension and vocabulary skills. SAT sub-scores 

were obtained from the university’s registrar as they were reported from the Educational 

Testing Service. SAT sub-scores have been found to have reliability coefficients exceeding 

0.9 and a large body of research has demonstrated predictive validity towards college grades, 

convergent validity with other predictors used in admissions, and construct validity by panel 

reviews and item analysis (Cohen and Cronbach, 1985).  

 

Test of Logical Thinking (TOLT) 

Several measures of formal thought have been developed, validated and utilized in the 

research literature.  What these measures share is an attempt to approximate the original 

Piagetian interviews.  Emulating a Piagetian interview is problematic, especially with large 

numbers of students, due to the time-intensive nature of the interview procedure.  As a result, 

written exams, in particular, have been constructed to take the place of these interviews.  

Perhaps the closest approximation to the interview procedure is Shayer and Adey’s Science 

Reasoning Tasks (Shayer and Adey, 1981), in which students are asked to make written 

predictions before they witness demonstrations and then are asked to explain what they saw in 

each case.  Depending on the task, questions may be free-response or require students to 

select from a set of responses.  
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However, for the present study, with class sizes approaching 200 students, we were 

concerned about the timing for student responses and doubtful that all students would be able 

to witness a demonstration adequately.  As a result, we elected to choose a completely written 

exam.  Among the possibilities are the Inventory of Piagetian Developmental Tasks, IPDT 

(Bender and Milakofsky, 1982); the Group Assessment of Logical Thinking, GALT 

(Roadrangka et al, 1983); the Test of Logical Thinking, TOLT (Tobin and Capie, 1981); and 

the Piagetian Logical Operations Test, PLOT (Staver and Gabel, 1979). Of these choices, the 

TOLT was selected because of its ease of administration (normally taking 40 minutes of class 

time); two-tiered question design, which reduces the possibility of students’ guessing the 

correct answer (Treagust, 1988); published validity (Tobin and Capie, 1981), and use in the 

research literature (Haidar and Abraham, 1991; Yarroch, 1991; Williamson and Abraham, 

1995; BouJaoude et al., 2004).  Additionally, a Spanish language TOLT has been developed 

and validated, making the instrument available to a larger audience (Acevedo and Oliva, 

1995).  Because of the ease of administration and bilingual availability, the TOLT may be 

seen as a preferential predictor to the SAT from an international perspective.  For this case 

and others in which SAT scores for entering students are not widely available, the TOLT can 

be given in less than one class period. 

The TOLT was developed and validated by Tobin and Capie to measure what they termed 

formal reasoning ability.  In order to do so items previously used by Lawson (Lawson, 1978; 

Lawson et al., 1979) were selected so that the test comprised two items for each of five modes 

of formal reasoning: controlling variables, proportional reasoning, probabilistic reasoning, 

correlational reasoning and combinatorial reasoning.  To receive a correct score for each item, 

students need to select the correct answer from up to 5 choices and select the correct reason 

for the answer from 5 possible reasons.  The only exceptions are the combinatorial reasoning 

questions, where students are required to list all the correct combinatorial possibilities without 

any replication.  The validation of TOLT was done by relating student scores on the TOLT 

with student performance via interviews, for students ranging from grade six to college 

(Tobin and Capie, 1981).   

 

ACS ‘Special’ Exam 

As noted, a large variety of predictor papers rely on student grades as an outcome 

variable.  As a research base, the results of these studies are generalizable only to the extent 

one can assume that student grades at the research institution match the desired student 

outcomes of other locales.  More importantly, without extensive detail, this assumption 

becomes impossible to assess.  With the desire to produce a generalizable model for 

identifying at-risk students, we selected an exam produced by the American Chemical Society 

(ACS), whose Division of Chemical Education features an Examinations Institute, which 

provides exams to chemistry teachers and administrators in high schools, colleges and 

universities. This exam is copyrighted and kept secure, so it can be given to candidates year 

after year, making it easy to make valid comparisons of student scores from different years 

and institutions. 

The Examinations Institute offers more than fifty exams covering general chemistry, 

organic chemistry, analytical chemistry, physical chemistry, inorganic chemistry, 

biochemistry, polymer chemistry, and high school chemistry (American Chemical Society, 

2006). The first semester general chemistry exams include various lengths of a conventional 

exam and a special examination (SP97A) meant to combine conceptual knowledge questions 

with the conventional (algorithmic) type questions.  Given the recent push towards conceptual 

understanding of chemistry in the research literature (Pickering, 1990; Sawrey, 1990; 

Nakhleh, 1993; Nakhleh et al., 1996 ) our view is that both conceptual and conventional 

assessment methods play an important role in the objectives of most general chemistry 
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courses.  As a result we selected the ACS special examination as the outcome variable for this 

study.  Though this exam played a large role in determining student grades (it served as the 

final exam for the course, 25% of student grades), there were other factors that also 

contributed to student grades.  Thus, it would be possible, though unlikely, for a student to 

complete the course successfully despite a poor performance on the exam.   

 

Participants 

The TOLT was administered during the first week of classes in 22 classes of the first 

semester of general chemistry at a large southeastern public urban research university over the 

course of three academic years.  Students were given 45 minutes to complete the TOLT.  

Taking the TOLT comprised a small portion of the students’ grades, and students were not 

graded based on their performance on the TOLT.  These administration procedures resulted in 

TOLT scores for 3798 students out of an estimated 4180 students enrolled in the 22 classes.  

Of the 3798 students, 56.0% of the students were in their first year in college, 62.1% were 

female and 74.1% reported having at least one full year of high school chemistry.
a
  A majority 

of the students described their major or intended major as pre-med or allied health 

professions.  Finally, when asked about the grade they expected to receive in the course, 

97.2% responded with either an A or a B.  Only one student reported anticipating failing the 

course.   

At the end of the course, students took the ACS exam as a final exam to measure student 

academic achievement.  Of the 3798 students, ACS exam scores were available for 2871 

students (75.6%).  Since completing the ACS exam was a course requirement, the likely 

reason for not obtaining ACS exam scores was students not completing the course. Finally, 

student SAT scores were obtained from institutional records.  Among the 2871 students that 

took the ACS exam, SAT scores were available for 2284 students.  The most likely causes for 

missing SAT scores were students taking the ACT in place of the SAT or students enrolling in 

the course after SAT records were pulled.  The focus of the analysis was the 2284 students for 

whom complete data was available.  The decision to omit missing data will be revisited in a 

later section, particularly since the missing data may disproportionately represent at-risk 

students. 

 

Examining the data 

Among the complete data, steps were taken to determine if there were any outliers in the 

data, so that no single data point would have an unusually large effect on the results of the 

analysis.  Outliers were determined by evaluation of the standardized residuals for a multiple 

regression model that included both SAT sub-scores and TOLT.  An examination for any 

standardized residuals greater than 3 (Stevens, 1999), revealed nine students found to be 

inconsistent with the general pattern, and these were omitted from future analysis, resulting in 

2275 students.  

Prior to examining the trends between variables, descriptive statistics were evaluated and 

are presented in Table 1. 

Table 1. Descriptive statistics for measures used. 

 TOLT 

(0-10) 

Math SAT  

(200-800) 

Verbal SAT 

(200-800) 

ACS Exam    

(0-100) 

Mean 6.80 559.14 540.58 52.02 

St. Dev. 2.613 83.505 82.648 16.638 

Skewness (Std. 

error = 0.048) 
-0.664 -0.048 0.070 0.240 

Kurtosis (Std. 

error = 0.097) 
-0.452 -0.166 -0.115 -0.690 
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The normality tests indicate that the TOLT scores feature a significant negative skew, 

indicating the scores were more heavily distributed at the higher values.  This may be a result 

of the setting of the study, since the TOLT was designed for grades 6 through college, while 

the sample consists entirely of college students.  While most statistical tests rely on a 

normality assumption, the tests employed are also very robust to violations of normality 

(Cohen et al., 2003). 

  

Analysis procedures 

As described previously, several research questions guided the nature of this 

investigation.  To investigate each question, inferential and descriptive statistics were used.  

Inferential statistics established the utility of the predictors by relating the predictors to 

performance and assisted in interpretation of the descriptive statistics.  Where possible, effect 

sizes were reported as a standardized measure of the differences seen, and operationalized 

using Cohen’s qualitative terms: small, medium and large effects.  As Cohen describes them, 

small effects are where the effect is small relative to the effect of uncontrollable extraneous 

variables (noise), medium effects are thought to be large enough to be visible to the naked eye 

and large effects are described as clearly visible (Cohen et al., 2003).  Descriptive and 

inferential statistics were used to relate the ability of the models to identify at-risk students.   

The first step in identifying at-risk students is to classify what would constitute an at-risk 

student.  Typically, a grade of ‘C’ is meant to denote an average performance, and students 

whose scores fall substantially below an average performance can be considered at-risk. For 

this study, substantially below average was considered to be scoring below the 30
th

 percentile 

on the ACS exam.  For this sample, students who scored below 43.3% correct on the ACS 

exam (i.e. more than 0.525 standard deviations below the mean), represent the at-risk group. 

802 out of the 2275 students (35.3%) in the sample scored below this cut-off.  Since it would 

have been conceivable to make the decision regarding the at-risk cut-off differently, the 

effects of choosing different cut-offs are discussed in a later portion of this paper. 

 

Results  

 

Which predictor, SAT or a formal thought measure, is better able to identify at-risk 

students? 

First the extent to which TOLT and SAT sub-scores have a linear relationship with 

academic performance was determined via correlation analysis.  The results from the relevant 

correlations are presented in Table 2. 

 
Table 2. Comparison of correlation coefficients. 

 TOLT VSAT MSAT ACS Exam 

TOLT ---    

VSAT 0.492 ---   

MSAT 0.654 0.625 ---  

ACS Exam 0.510 0.527 0.608 --- 
all coefficients p < 0.001 

 

The presence of significant positive correlation coefficients is indicative of a relationship 

with academic performance among all the predictors.  Correlation coefficients also provide an 

indication of the strength of relationship between the predictors and the outcome variables.  

Using Cohen’s effect size operation, each of the predictors features a large effect size with the 

outcome variable, and a large effect size between each predictor.  Thus each predictor is 
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believed to be a reasonable construct in explaining ACS exam score, and consideration will 

need to be given to the possibility of the predictors over-lapping.  This is consistent with our 

goal to determine whether formal thought and general achievement can be thought of as 

distinctly different in terms of their bearing on college chemistry achievement. 

In order to determine the ability of the predictors to identify at-risk students, two linear 

regression models were used.  The first model relates TOLT to students’ scores on the ACS 

exam, and the second relates the SAT sub-scores to the ACS exam.  The combination of both 

SAT sub-scores in one model was chosen to represent the practical option for data available to 

instructors.  The results from the two regression models are shown in Tables 3 and 4 below: 

 
Table 3. TOLT model results. 

Coefficient Slope Std. Error t-value p 

Constant 29.936 0.837 35.748 <0.001 

TOLT 3.245 0.115 28.249 <0.001 
R2 = 0.260      Model F = 798.006 

 
Table 4. SAT model results. 

Coefficient Slope Std. Error t-value p 

Constant -25.196 1.995 -12.630 <0.001 

SATV 0.04864 0.004173 11.657 <0.001 

SATM 0.09107 0.004130 22.050 <0.001 
R2 = 0.405      Model F = 774.514 

 

Using each model, it is possible to depict which students would be identified as at-risk by 

each set of predictors.  For the TOLT model, TOLT scores of 4 or less are predicted to be 

below the cut-off.  By this criterion, the TOLT model identifies 471 students in the sample to 

be at-risk.  Of those 471 students, 332 students had an actual ACS exam score below the cut-

off, indicating 70.5% of those predicted were correctly classified (see Table 5). Of the 139 

incorrectly classified, 75 scored below average on the ACS exam. 

The SAT model predicts students to be below the cut-off via a variety of SAT score 

combinations, so it is not appropriate to name a single set of SAT cut-offs.  However, as rule 

of thumb, scores below 500 on both the math and verbal portion would qualify as at-risk in 

this context, although a score below 500 on one portion could potentially be offset by a higher 

score on the other. Application of the SAT model led to a classification of 451 students as at-

risk based on the combination of SAT sub-scores, slightly lower than the number of students 

the TOLT model predicted.  Of the 451 students, 327 were correctly classified, a 72.5% 

success rate, a rate slightly higher than the TOLT model (see Table 5).  Of the 124 incorrectly 

classified in this group, 69 scored below average.   

Table 5. The model predictions: at-risk students. 

 Predicted 

At-risk 

Actually 

At-risk 

% correct 

predictions 

TOLT model 471 332 70.5% 

SAT model 451 327 72.5% 

 

The similar success rates in identifying at-risk students is curious, given the lower R
2
 of 

the TOLT model compared to the SAT model.  As a measure of goodness of fit, it is expected 

that the higher the R
2
 value, the better the model would be at predicting scores.  This 

expectation would hold true if predictions for the entire sample were considered.  However, in 

looking only at the at-risk students, a subset of the sample is being examined.  Why the TOLT 
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model is able to identify at-risk students better than expected based on its R
2
 value may be 

understood by considering the following scatter-plots, in which the relationship between ACS 

exam score and TOLT can be compared with the relationship between ACS exam score and 

Math SAT.  Because of the large number of data points, a 20% random sample of the data is 

used in these plots. 

 

Figure 1. Low TOLT identifies at-risk. 

 

 

Figure 2. SAT predicts entire range. 

 
 

The TOLT plot (Figure 1) demonstrates that the variability of ACS exam scores is low for 

the low TOLT scores, while the ACS exam scores span almost the entire range for the high 

TOLT scores.  This broad distribution at the high end is the likely cause for the lower R
2
 for 

the TOLT model as compared to the SAT model.  In the Math SAT plot (Figure 2), a more 

linear trend is observed: high Math SAT scores correspond to higher ACS exam scores, while 

lower Math SAT scores correspond to lower ACS exam scores, which would lead to a higher 

R
2
.  (Verbal SAT has a similar distribution, as does a combination of the two SAT sub-scores 

using the weighting found in the regression model; only one of these three possible plots is 

shown for simplicity).  For this reason, SAT would be better suited for identifying successful 

students than TOLT, while the at-risk students in this sample are comparably identified by 

each model.   

 

Are the at-risk students identified by each predictor a distinct group, which may lead to 

more specific interventions geared at each group of students? 

Since all three predictors (TOLT, Math SAT, and Verbal SAT) used in the two models 

feature strong correlations with each other (Table 2), it is tempting to hypothesize that poor 

performance on any one of the three is indicative of poor performance on all, so that a student 

predicted to be at-risk by one model would also be predicted to be at-risk by the other. 

However, this turns out to hold true for just over one-half of the cases predicted to be at-risk: 

of the 471 students predicted to be at-risk by the TOLT model and the 451 students predicted 

to be at-risk by the SAT model, only 266 of the students were classified as at-risk by both 

models. It is useful to consider three exclusive categories: students predicted to be at-risk by 

both models, at-risk by only the TOLT model, and at-risk by only the SAT model. Table 6 

shows the number of students that fall into each category (top row), and the resulting 

performance on the ACS exam for each category (middle two rows).  The bottom row of the 

table presents the rates of correct prediction in each category for comparison.   
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Table 6. The overlap between models. 

Model Predictions 

of At-risk Status 

Only TOLT 

At-risk (n=205) 

Only SAT 

At-risk (n=185) 

Both models At-risk 

(n=266) 

Correct (scored 

Below Cut-off) 
113 108 219 

Incorrect (scored 

Above Cut-off) 
92 77 47 

% Correct 55.1% 58.4% 82.3% 

 

From Table 6 it appears that each model, TOLT and SAT, describes a distinct trait that 

hinders success in chemistry. There is a distinct group of 113 students that performed poorly 

on the TOLT and on the ACS final exam while performing satisfactorily on the SAT measure. 

A similar situation occurs for 108 students who performed poorly on the SAT and on the ACS 

final exam while performing reasonably well on the TOLT. These two cases demonstrate that 

the two models identify different groups of students as being at-risk, even though 219 

students were correctly predicted by both models to be at-risk.  It should also be noted that 

neither of the models identifies all students who are at-risk: out of the 1619 students not 

predicted to be at-risk by either model, only 1257 (77.6%) in fact performed above the cut-

off.  This will always be the case: the models attempt to identify factors that are necessary for 

success in general chemistry, but necessary does not mean sufficient.   

Statistical comparisons between percent correct predictions employed an arcsine 

transformation to stabilize variances (Cohen, 1988). The highest percent correct is for those 

who would be classified as at-risk by both the TOLT model and by the SAT model, 

demonstrating that a combination of low scores on both measures leads to a greater chance of 

students performing poorly on the ACS final exam. The differences in correct prediction rate 

between this ‘both’ category and each of the two ‘only’ categories were significant with a 

medium effect size.  No evidence supporting a significant difference in percent correct 

between the only TOLT category and the only SAT category was found, indicating that 

neither model isolates a distinct group of at-risk students better than the other.  

 

Can a combination of SAT and formal thought measures provide an advantage in 

identifying at-risk students? 

The previous discussion has shown that, if both the TOLT model and the SAT model 

predict a student to be at-risk, that is very likely to be the case! However, this post-hoc 

combination of the predictions of two different models may be too conservative, identifying 

only a relatively small number of at-risk students. It may be possible to construct a single 

model using both sets of predictors that will retain a high success rate and identify a larger 

number of at-risk students.  To investigate this possibility, a model (shown in Table 7) was 

constructed to use both SAT sub-scores and TOLT scores: 

Table 7. Combined TOLT and SAT model. 

Coefficient Slope Std. Error t-value p 

Constant -19.477 2.106 -9.250 <0.001 

SATV 0.04410 0.004163 10.594 <0.001 

SATM 0.07253 0.004738 15.310 <0.001 

TOLT 1.0440 0.13574 7.691 <0.001 
R2 = 0.420       Model F = 549.274 

 

Each predictor entered the model significantly, indicating that, even when controlling for 

the variability that comes from the other predictors, both SAT sub-scores and TOLT still 
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feature a significant relation with the ACS exam, which is consistent with the interpretation of 

the data in Table 6 that TOLT and SAT map onto performance in distinct ways. (Note that the 

incorporation of interaction terms TOLT*MSAT and TOLT*VSAT into the model adds only 

0.009 to R
2
; therefore, these terms were not retained in the model.) Similar to the SAT model, 

this new model that combines both SAT sub-scores and TOLT scores has many combinations 

of predictor scores that would result in an at-risk prediction.  The combined model predicts 

489 students to be at-risk, higher than the 266 predicted by the overlap of the two individual 

models.  Of those 489 students, 354 scored below the ACS final exam cut-off and thus were 

correctly classified.  This leads to a success rate of 72.4%, which is only slightly higher than 

the 70.5% seen with the TOLT model, and essentially equivalent to the 72.5% rate of the SAT 

model.  Further, of the 354 students correctly classified by this combined model, 351 had 

been identified by one of the two previous models.  Thus the combination of both predictors 

in a single regression model fails to provide an improved way to identify at-risk students, 

since only three additional students were correctly found by combining the two sets of 

predictors.  Of the 135 misclassified, 71 scored below average on the exam.    

 

To what extent are all at-risk students identified by this set of predictors? 

Of the 2275 students, 802 students finished the course below the ACS cut-off.  Of these 

802 students, 443 students (55.2%) were identifiable based on scores from either TOLT, SAT 

or a combination of the two.  Thus a sizable portion of the students that performed poorly on 

the ACS exam was not identifiable by these models.  We believe this finding may be 

representative of a need to include non-cognitive predictors, such as affective measures like 

motivation or confidence, if the goal is to predict all at-risk students.  However, it is important 

to recognize that many non-cognitive factors may feature a strong correlation with general 

achievement (House, 1995). Rather than attempting to include non-cognitive factors in this 

study, it would be more appropriate to focus an additional study on the degree to which 

affective factors are distinct from general achievement, in the same manner as we have set out 

the comparison between formal thought and general achievement. 

 

At-risk cut-off 

It is recognized that the decision to employ the cut-off at the bottom 30% of the sample is 

somewhat arbitrary, as other values such as the bottom 25% or bottom 33% could reasonably 

suffice.  To address these concerns and to understand the impact of this decision on the 

conclusions reached, a SAS program was developed to calculate the percent correct 

predictions for each model as the cut-off point is changed.  The results have been plotted in 

Figure 3. 

First, note from Figure 3 that the models switch places depending on the cut-off decision, 

but all of them remain relatively close together, so that no model offers a distinct advantage 

over the others in terms of accuracy in identifying at-risk students.  Also note the general 

upward trend of percent correct predictions as the cut-off decision increases.  This can be 

attributed to chance guessing.  For example, if the cut-off is placed at 20%, randomly 

selecting students would get 20% correct prediction in identifying at-risk students.  However, 

if the cut-off was 40%, there would be a 40% chance of identifying at-risk students by random 

selection.  In general, each model stays approximately 35 - 45% above the random selection 

method of identifying students. Now that we can describe the role of the models in the 

identification of at-risk students for whom SAT scores were available, we will now turn our 

attention to another important aspect of this study, the consideration of students for whom 

SAT scores were not available.  
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Figure 3. Correct predictions for each model versus the cut-off point.   

 
 

Those without SAT scores 

As mentioned, cases for which SAT scores were unavailable were omitted so that the 

previous comparisons between the SAT model and the TOLT model could be undertaken for 

the same group of students. This omission presents some interesting implications for the 

study.  A chief concern with missing data is the presence of a trend in those students who 

have missing data, because the presence of any such trend represents a limitation in the 

generalizability.  By omitting students without available SAT scores, it is necessary to check 

if the group omitted differs from the group studied.  If so, then the applicability of the analysis 

to those omitted may be questionable.  Table 8 presents the results from this comparison   

Table 8. Comparison of those with SAT scores to those without. 

 Avg. score for those with 

SAT (n, st dev) 

Avg. score for those 

without SAT (n, st dev) 
t-test p-value d-value 

TOLT 6.65 (2957, 2.656) 6.24 (841, 2.645) 3.934 0.000 0.155 

ACS Exam 52.11 (2284, 16.724) 49.92 (587, 16.178) 2.839 0.005 0.133 

 

The students without SAT scores scored significantly lower on both the TOLT measure 

and the ACS exam measure than students with SAT scores.  The d-value is the effect size for 

comparing two means, with both values representing a small effect. Because of the 

differences between students with SAT scores and those without, the students without SAT 

scores likely represent a non-random population.  For this reason we will examine these 

students separately in terms of the conclusions presented so far. 

There were 841 students in the original sample without SAT scores, and 587 of those took 

the ACS exam.  While no claim can be made regarding what the SAT model would have 

predicted for these students, the role of TOLT in identifying at-risk students can still be 

investigated.  To do this, a new regression model (Table 9) was fitted for just these 587 

students. 
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Table 9. TOLT model for students without SAT scores only. 

Coefficient Slope Std. Error t-value p 

Constant 31.910 1.599 19.962 <0.001 

TOLT 2.799 0.230 12.149 <0.001 
R2 = 0.201       Model F = 147.587 

 

As does the previous TOLT model, this model indicates a positive linear relationship 

between TOLT and ACS exam scores.  An examination of the standard error associated with 

the TOLT coefficient (0.230) and the intercept (1.599) in this model indicates that it cannot be 

considered different from the original model.  It appears the conclusions reached regarding 

the previous TOLT model also apply to the students without SAT scores.  Of the 587 

students, 150 scored at or below a 4 on the TOLT and would therefore be characterized as at-

risk.  Of these 150 students predicted to be at-risk, 101 scored below the ACS final exam cut-

off, giving a 67.3% success rate in classification.  Of the 49 incorrectly classified, 20 scored 

below the average score.   In short, the inclusion of students for whom SAT scores were not 

available reveals nothing inconsistent with the previous findings regarding the utility of 

TOLT. The conclusion that TOLT as a formal thought measure identifies a barrier to the 

success of chemistry students holds true for those in our sample without SAT scores.  The 

distinct advantage of the TOLT model over the SAT model here is that, even though SAT 

scores were unavailable, the ease of administration of the TOLT made it possible to identify 

correctly an additional 101 students as being at-risk.  

 

Those who did not finish the course 

As mentioned earlier, those who did not finish the course represent a significant portion 

of the at-risk student population.  However, while leaving the course may be a function of 

academic performance during the course, there are also a variety of other reasons for such a 

departure, ranging from personal health to financial trouble.  For this reason, we are hesitant 

to classify all students who did not finish the course as at-risk students.  However, given the 

nature of the conclusions reached regarding the ability of TOLT to predict performance, it 

will only be necessary to examine those whose TOLT scores fell at or below 4, to determine if 

those students were in fact performing poorly when they left the course.  This will be 

approximated by reviewing students’ scores on four instructor-generated, multiple-choice in-

course tests, in comparison to the class performance on the same test. 

Of the 3798 students in this study, 927 students (24.4%) did not take the ACS exam.  Of 

those 927 students, 263 students (28.4%) scored at or below a 4 on the TOLT, which was the 

criterion previously used for at-risk classification.  Forty-two of the 263 students did not take 

any of the tests, so their decision to drop the course came relatively early, and unfortunately, 

little else can be said of them.  However, of the remaining 221 students, 194 students scored 

in the bottom 30% within their class on every test they took.  Of the remaining 27 students, 22 

scored above this mark only once.  While it is not possible to extrapolate an exact reason for 

leaving a course from the data available, and indeed the decision is likely attributable to a 

number of factors, the data do indicate that low academic performance probably played a role 

in the decision and that low performance on the TOLT would have served as a warning sign 

for this population. 
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Discussion 

 

What we have identified with this study is threefold: 

1) Formal thought (as measured by TOLT) and general achievement (as measured by SAT) 

represent separate and distinct factors, each of which can be used to identify at-risk 

students. 

2) Neither the formal thought measure (TOLT) nor the general achievement measure (SAT) 

is clearly superior in terms of percent correct identification of at-risk students. 

3) The ease of administration of the TOLT makes it possible to use this measure to identify 

additional at-risk students for whom SAT scores are not available 

The fact that both general achievement and formal thought represent distinct factors (see 

discussion of Table 6) in this study is important.  It seems there are at least three groups of at-

risk students: those who do not have an appropriate knowledge of mathematics and language 

for success in chemistry, those who do not have the requisite reasoning skills for success in 

chemistry, and those who lack both.  In other words, even if a student performs reasonably 

well on the SAT, low formal thought ability can still hinder his or her success in chemistry, 

and the reverse is also true. Since this result shows that mathematics achievement and 

reasoning ability represent different barriers to success, effective remediation aimed at these 

two different groups of students will incorporate a review of relevant mathematical and verbal 

skills as well as the opportunity to work on developing formal thought ability. A remedial 

course focused solely at reviewing fundamental mathematical rules in the abstract (e.g. how to 

isolate variables in an equation, how to manipulate logarithms) is definitely too narrow.  

Connecting mathematical manipulations with concrete observables in chemistry could provide 

some assistance to both groups; however, the chemistry content review in a standard remedial 

course has not typically led to success for a large proportion of students (Bentley and Gellene, 

2005).  We suggest that attention should be paid to the sequencing of concepts in the 

chemistry content review, presenting the most abstract only after a concrete foundation has 

been established (Tsaparlis, 1997; Sanger et al., 2001). Chemistry educators have also 

achieved some success with improving cognitive skills such as formal reasoning ability in the 

context of chemistry courses via the integration of carefully sequenced problem-solving 

activities, incorporating algorithms of increasing complexity, with conceptual instruction 

sufficient to explain the ‘how’ and ‘why’ of the calculations at each level (Tsaparlis, 2005).  

From a pedagogical perspective, chemistry review lectures on concrete concepts but with 

few graphics, animations, or demonstrations require students to create their own mental 

models of these concepts, a skill associated with formal rather than concrete thinking.  Taking 

advantage of the wide array of animations available for illustrating major concepts in 

chemistry is perhaps the simplest way to scaffold learners with low formal thought ability in 

the large lecture setting (Williamson and Abraham, 1995; Tasker et al., 1996; Sanger and 

Greenbowe, 2000; Wu et al., 2001; Stieff, 2005). Another alternative is the incorporation of 

computer-assisted learning activities to supplement lectures.  Simulations with a focus on 

manipulating variables and repetition have shown promise with science learners of low formal 

reasoning ability (Huppert, 2002).  In general, researchers have recommended the use of 

active learning practices to avoid over-dependence on lectures (Chandran et al., 1987; Shayer, 

2003). Tien et al. (2002) and Lewis and Lewis (2005) provide examples of effective active 

learning reforms that de-emphasize lectures without moving completely from the lecture 

format.  

Finally, in all cases, both quantitative and qualitative investigations of the effects of the 

reform on different groups of students are needed to provide insight into whether and how 

these reforms assist those who need to develop formal thinking skills as well as chemistry 

knowledge.  How should these investigations be conducted? Indeed, considering formal 
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thought as a factor distinct from general achievement in college chemistry has implications 

for research as well as for teaching. The relationship between formal thought as measured by 

TOLT and chemistry performance (displayed graphically in Figure 1) is important: TOLT is a 

better predictor of at-risk students than of successful students. Therefore, studies that 

investigate a relationship between TOLT and academic performance through the use of linear 

regression or correlation (BouJaoude et al., 2004) may be underestimating the importance of 

formal thought.  A large amount of variation in academic performance for students with high 

TOLT scores, while congruent with cognitive development theory, would lead to a reduced 

proportion of variance explained by TOLT as compared with other predictors of performance. 

In other words, researchers may be misled into thinking formal thought is not relevant for a 

given situation, when, in fact, the association of low formal thought ability with poor 

performance is masked by the large variability in performance for those at the higher end of 

the TOLT. A suggestion for researchers who are considering such models is to dichotomize 

TOLT scores, creating a low TOLT score and high TOLT score classification, an approach 

that is better aligned with the theory of developmental stages. Another option would be to 

consider students with low TOLT scores as a unique subset of students.  This latter option 

should be of particular use when evaluating whether pedagogical reforms are able to help 

different groups of at-risk students.  

Even though this study focuses on college-level general chemistry, it is also worthwhile 

to consider broader teaching implications. Longitudinal work from Novak has shown that 

complex science instruction among elementary age students can show improved 

understanding at the high school level on similar concepts, far removed from the intervention 

(Novak, 2005).  Therefore initiatives to improve formal thought ability could also be 

instituted earlier in the educational stream, with the strong possibility for improving the trends 

witnessed here at the college level.  One such initiative, Shayer and Adey’s Cognitive 

Acceleration program (Adey and Shayer, 1994), has shown promising results in promoting 

cognitive development among middle school students.  

 

Conclusions 

 

In this study, formal thought has been found to have a unique relationship to chemistry 

achievement apart from SAT sub-scores, even though the two constructs share a medium-

sized correlation. Low formal thought ability impedes success in chemistry as much as low 

SAT sub-scores, and formal thought has been shown to represent a necessary factor for 

success in college-level general chemistry for a distinct group of students.  Recommendations 

for remediation and for future research were discussed in light of these findings.  It is 

important to note that, while both measures used in the study had reasonable success at 

identifying students at-risk of performing poorly in college-level general chemistry, there was 

an additional group of students whose poor performance was not predicted by either measure.  

Therefore, factors that are unaddressed in this paper are also likely to play a role in success in 

chemistry. Research into affective aspects of chemistry learning with specific emphasis on at-

risk students would complement the cognitive approach taken in this paper.  In particular, 

identifying those affective components that prevent students from achieving success despite 

high cognitive abilities may help identify other distinct groups of at-risk students and lead to 

the development of targeted remedies for these groups.   
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Notes 

 

a. It was found that those students completing one year of high school chemistry or more 

scored significantly higher, with a consistent small effect size (d=0.2), than those who did not 

on all four measures (Table 10): 

Table 10. Comparison of high school chemistry takers with non-takers. 

Average Score (standard deviation, n)  

< 1 full year of high 

school 
" 1 full year of high 

school chemistry 

t-value p-value d-value 

TOLT 6.19 (2.73, 936) 6.73 (2.61, 2678) 5.437 0.000 0.202 

Math SAT 533.5 (84.8, 691) 558.2 (83.1, 2184) 6.770 0.000 0.294 

Verbal SAT 523.8 (83.1, 691) 539.6 (81.7, 2184) 4.416 0.001 0.197 

ACS Exam 48.0 (15.1, 660) 53.0 (16.9, 2107) 6.737 0.000 0.312 

 

The high school chemistry taking population is therefore likely not representative of the 

college chemistry taking population.  This also supports Chandran et al.’s (1987) postulate 

that students taking high school chemistry represent a population of students that are likely to 

succeed in chemistry. 
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